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Abstract

Many algorithms on health monitoring from ambient
sensor networks assume that only a single person is
present in the home. We present an unsupervised method
that models visit behaviour. A Markov modulated
multidimensional non-homogeneous Poisson process
(M3P2) is described that allows us to model weekly and
daily variations and to combine multiple data streams,
namely the front-door sensor transitions and the general
sensor transitions. The results from nine months of sensor
data collected in the apartment of an elderly person show
that our model outperforms the standard Markov
modulated Poisson process (MMPP).
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Introduction

In recent years there has been a lot of work on ambient
sensor networks for monitoring human activities in a home
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environment, see [1, 2] for surveys. Most studies on
activity recognition, anomaly detection or trend detection
assume that there is only a single resident in the home.
However, using supervised learning, multi-person activity
recognition methods in smart homes have been presented,
either based on joint location uncertainty [8], naive Bayes
[7], activity models trained on individuals [3] or joint
activity modeling [11].

Figure 1: A map of the volunteer’s apartments equipped with

a wireless sensor network. The orientation of the motion sensor

is indicated by the orientation of the letter M.

Currently our group monitors about 20 elderly living alone
using sensor networks. For a correct health assessment it
is important that we are sure that the data originates
from the activities of the resident only and that we know
whether there are visitors. Supervised methods for visitor
detection have been presented [6], but our future projects
will involve even more people, and we can not rely on
supervised methods. For that reason, the objective of our
research is to develop and test an unsupervised method

that is able to detect visits from ambient sensor data.

We consider visits as an abnormal activity that will
increase sensor counts. Unsupervised methods for the
detection of abnormal behaviour in smart homes have
been presented for applications like fall detection or
wandering [5] but not for visit detection. A model that
has been successfully applied for the detection of
anomalous events in sensor counts is the Markov
modulated Poisson process (MMPP) [10, 4]. However,
MMPPs are univariate, and as such cannot deal with the
richer datasets that are common to AAL. In this paper we
present the Markov Modulated Multidimensional
heterogeneous Poisson Process (M3P2) for the detection
of visits. The contribution of our research is twofold: a)
the novel Multidimensional Markov Modulated Poisson
Process (M3P2) model can deal with multiple data
streams, and b) we show that the heterogeneous model
allows us to model weekly and daily variations and to
distinguish between normal and abnormal visits. In order
to measure the performance of our model we carried out
experiments with real-life sensor data. We use a data set,
that will be made public, consisting of nine months of
sensor data collected in the apartment of an elderly
person. The results show that our model outperforms the
standard MMPPs.

Sensor Data

We have continuously collected data for more than a year
in the apartment of an elderly person, in a care centre in
The Netherlands, which is equipped with a sensor network.
Our sensor network uses the Z-Wave protocol and consists
of o↵-the-shelf binary sensors that measure motion,
pressure on the bed, toilet flushing and the opening and
closing of cabinets and doors. An overview of the location
of the sensors in the apartment of one resident is shown in

1194

UBICOMP '14 ADJUNCT, SEPTEMBER 13 - 17, 2014, SEATTLE, WA, USA



Figure 1. The elderly are living their routine life and are
not told to modify their behaviour in any way.

A set of 9 months sensor data, collected from one
apartment between March 31 and December 31, 2013, is
used to conduct the experiments in this paper. Although
our method is unsupervised, we need ground truth data
for evaluation. This is done by visually inspecting the raw
sensor data. To simplify the search, we relied on the
information given by the resident during several
interviews. To find the unusual visits, we focused on the
times at which we know the resident occasionally receives
visits from his children. To find the unusual absence of
visits, we focused our search on the daily visits from a
caregiver every day around 8:30 in the morning and 9 in
the evening and the weekly visits of the cleaner every
Friday between 9 and 12 in the morning.

Feature Extraction

Similar to [6], sensor-transitions, defined as a tuple of two
consecutive sensor readings, are used as features.
However, we particularly select features that deal with the
presence of multiple people (i.e. visits). Define NM (t) to
be the number of transitions during time slice t, between
sensors that are not topologically connected. We define
two sensors to be topologically connected if one person
can activate the sensors consecutively without activating
another sensor. For example, the sensors from the
bedroom and the bathroom are topologically connected,
while the sensors from the kitchen and the bathroom are
not topologically connected. The only way the resident
can move from the kitchen to the bathroom is through
the living-room and the bedroom, as shown in Figure 1.
In addition to these, we define ND(t) to be the number of
sensor-transitions during time slice t, for which one of the
sensor readings originates from the front-door sensor.

Both features, NM (t) and ND(t), are informative and
should be taken into account in the modelling of visits
behaviour.

Multidimensional MMPP

The Poisson process is a widely used stochastic process
for modelling counts of random events that occur during a
time interval. A Markov Modulated Poisson Process
(MMPP, [9]) is a non-homogeneous Poisson process,
where the rate �(t) of the count data N(t) varies over
time and follows a Markov chain. We follow [4], where
both the periodic and non-periodic influences on the
count data are modelled. The periodic aspects (i.e., daily
and weekly cycles) are modelled by decomposing the rate
�(t) as follows:

�(t) = �0 · �d(t) · ⌘d(t),h(t) (1)

where �0 represents the average rate over a full week, �j
represents the e↵ect of the day j of the week and ⌘j,i
represents the e↵ect of the time i of day j of the week.

An important limitation the MMPP is that the model is
restricted to one-dimensional observations. In our
application, both the counts NM (t) and ND(t) are
informative and should be taken into account. Although
multivariate MMPP have been analysed [12], this does
not extend to non-homogeneous MMPP. We therefore
extend the model to multiple simultaneous count features,
resulting in M3P2. A graphical model of the M3P2 is
given in Figure 2.
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Figure 2: Graphical model for di↵erent distributions and

variables defining the M3P2. The shaded nodes are observed

and the small solid nodes indicate deterministic parameters.

The directed edges indicate conditional dependence of the

nodes. �M (t) depends on the parameters �M
0 , �, ⌘, d(t) and

h(t), while NM (t) depends on NM
0 (t), NM

A (t) and z(t).

Let N i(t) denote the i-th observation stream. Similar to
the MMPP, we model each observed count N i(t) as the
sum of the base counts N i

0(t) and the variation (positive
or negative) N i

A(t) due to a visit (presence of absence).
Assume that these counts are independent. As with
MMPP, z(t) denotes the latent variable with the states
�1 (absence of visit), 0 (normal) and 1 (visit). In our
application, it is advantageous to explicitly model the
usage of the front-door by introducing a new state
z(t) = 2. This state acts as a gating state without which
it is impossible to transition from the absence of a visit to
its presence, and vice-versa.

The calculation of the posterior probability
p(z(t)|NM (t), ND(t)) in case of two data stream is done
using the Markov Chain Monte Carlo (MCMC) sampling
method following [4].

Experiments

A set of three experiments is conducted to study the
performance of the model. In the first experiment we
studied the e↵ect of the time discretization: the duration
of the time-slice in which we count the transitions. If this
is too small we may have too few counts to make a good
model, if it is too large we lose resolution and will miss
information: the duration of a visit may vary from few
minutes to several hours. A second experiment was
carried out to investigate the performance of the model in
capturing temporal variations. We model the e↵ect of the
daily and weekly periodicity by modulating the rate � with
parameters � and ⌘. Apart from this periodicity we expect
also a yearly (seasonal) periodicity, which we did not
model as our data spans only 9 months. To investigate
these e↵ects, we trained the model with a sequence of 13
weeks and the full sequence of 39 weeks. In the third
experiment we compared our model M3P2 with the
baseline, the standard MMPP model.

To measure the performance of the model we used the
annotated data as described in Section 2. In order to map
the ground truth into discrete time slices, we decided to
label all the time slices that are fully or partially covered
by an unusual visit as a positive class (z = 1). The same
procedure holds for the unusual absence of a visit
(z = �1). The precision, recall and the F-value are
computed separately for the two states (z = 1 and
z = �1). An unusual visit lasting more than one time
slice is defined to be correctly detected if at least one time
slice of this visit is correctly detected by the classifier.
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Results

E↵ect of time discretization
We varied the number of time slices in a day
D 2 {24, 12, 8}, corresponding to time slice lengths of
1, 2, 3 hours. The reason for limiting these values to only
3 is because the majority of the unusual visits has a
duration of 3 hours or less. We performed 3-fold cross
validation and report the average results. The results,
listed in Table 1, show that the precision increases with D
while the recall decreases, resulting in little change in the
F-values.

slice length unusual visits (z = 1)
D (hours) precision recall F-value
8 3 0.67 0.75 0.71
12 2 0.63 0.83 0.72
24 1 0.54 0.95 0.69

Table 1: Precision, recall and F-value obtained when MMPP

is applied on N(t). The standard deviation is less than 0.1 in

all cases.

These results may be explained by the fact that
decreasing the time slice length, which implies an increase
of D, facilitates the discovery of (short) unusual visits. As
a consequence, the recall will increase. On the other
hand, decreasing the time slice length will decrease the
number of observation per time slice, which will increase
the variance. As a consequence, the number of false
positives will increase, which decreases the precision. The
results of the unusual absence of visits (z = �1) are not
reported because of lack of data, resulting in a very large
standard deviation of the F-value. The first fold (calendar
weeks 14-27) and the third fold (calendar weeks 40-53)
have only one or two ’unusual absences of visit’, while the
other ’unusual absences’ lie in the second fold. In our
case, the recall was almost always equal to 1 (respectively

equal to 0) when testing with the first fold (respectively
the third fold). We chose for D = 24 because it gives the
best compromise between the performance and the
practical usage.

Temporal variations
An experiment where W , i.e. the period in which we
assume that behaviour does not change, is set to di↵erent
values between 4 weeks and 39 weeks (approximately 9
months) is conducted. Setting W = 39 means that we
assume there are no seasonal influences on the behaviour,
while setting W = 4 means that we assume there are
’monthly’ influences on the behaviour. The results given
in Table 2 show that the best performance is obtained
when using a period of 13 weeks long. This is remarkably
close to the duration of a meteorological season, and it
seems very plausible that there is a seasonal e↵ect in the
data. It will be interesting, in future work, to incorporate
this in the model and evaluate it on multi-year data. The
results for the absence of regular visit (z = �1) are not
reported for the same reason as the previous experiment.

W unusual visits (z = 1) std dev
(weeks) precision recall F-value F-value

4 0.58 0.84 0.66 0.12
6 0.57 0.87 0.67 0.10
8 0.58 0.87 0.68 0.10
13 0.56 0.96 0.71 0.03
39 0.48 0.97 0.64 0.01

Table 2: Precision, recall and F-value obtained when MMPP

is applied on N(t) using D = 24 and di↵erent values for the

period W (i.e. di↵erent total number of time slices T ).

Comparison of the models M3P2 and MMPP
For the application of M3P2 on the collected data and the
comparison with MMPP, the results of the first two
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experiments applied on MMPP are used. Hence, the
priors that resulted in the best performance of MMPP are
used as start point to find the best priors for the first data
stream NM (t) of M3P2.

The results of this experiment, listed in Table 3 show that
the M3P2 results in higher F-values than MMPP. The
better precisions of M3P2 compared to MMPP reflect the
lower false positives obtained when M3P2 is used. This
can be explained by the fact that M3P2 gives the
possibility to separately set the priors for each data
stream, which influences the precision in a positive way.

Model unusual visits (z = 1)
(MMPP/M3P2) precision recall F-value

MMPP 0.56 0.96 0.71
M3P2 0.64 0.87 0.74

Table 3: Precision, recall and F-value obtained when M3P2 is

applied on NM (t) and ND(t) using one hour as time slice

length (i.e. D = 24) and a season for the total time period T
(i.e. W = 13). The variance is less than 0.01 in all cases.

Most of the MMPP’s false positives are caused by slight
temporal shifts of the nurse’s daily visits. An earlier
(respectively later) visit of the cleaner results in a higher
value of NM (t) in the preceding (respectively following)
time slice than the one in which the visit normally takes
place. An example of such visits, which last few minutes,
is shown in Figure 3(a). Another reason for false positives,
in both models, is the lack of an accurate annotation, it
was in some cases di�cult to determine whether a visit
took place or not by only using the raw sensor data. We
chose in such case to not label that time slice as a visit,
which may result in false positives. An example of such a
case in shown in Figure 3(b).

Conclusions

In this paper we presented an unsupervised method for
the detection of abnormal visits in the home of an elderly.
The method is based on a MMPP. Our method, referred
as M3P2, solves the limitation of MMPP that can only
deal with one-dimensional observation stream. The M3P2
is tested to nine months of sensor data, collected in the
apartment of an elderly living alone person. The study has
shown that M3P2 is able to detect abnormal visits with a
clearly higher f-measure than the MMPP. In particular,
the reduced amount of false positives reflected in the
much higher precision is of great practical importance in
care environments. In addition, the approach is able to
model daily and weekly characteristics, and can be used to
distinguish between recurrent and irregular visits.

The findings of this study have a number of important
implications for future practice. Detecting visits and
analysing them gives an insight in the social life of the
resident. In future work, applying the M3P2 to other
features, such as the mobility at home, may result in an
insight in the functional health status of the resident.
These insights can be used to generate di↵erent kinds of
alarms.
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Figure 3: MP-transition counts N(t) along with �(t), the corresponding posterior probabilities (p(z)) and the ground truth.
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