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ABSTRACT 
Maintaining the child-robot relationship after a signifcant break, 
such as a holiday, is an important step for developing sustainable so-
cial robots for education. We ran a four-session user study (� = 113 
children) that included a nine-month break between the third and 
fourth session. During the study, participants practiced math with 
the help of a social robot math tutor. We found that social person-
alization is an efective strategy to better sustain the child-robot 
relationship than the absence of social personalization. To become 
reacquainted after the long break, the robot summarizes a few pieces 
of information it had stored about the child. This gives children 
a feeling of being remembered, which is a key contributor to the 
efectiveness of social personalization. Enabling the robot to refer 
to information previously shared by the child is another key con-
tributor to social personalization. Conditional for its efectiveness, 
however, is that children notice these memory references. Finally, 
although we found that children’s interest in the tutoring content 
is related to relationship formation, personalizing the topics did not 
lead to more interest in the content. It seems likely that not all of 
the memory information that was used to personalize the content 
was up-to-date or socially relevant. 

CCS CONCEPTS 
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1 INTRODUCTION 
As part of an efort to reduce math defciencies in primary education, 
we are developing a social robot math tutor. This work is part of the 
SOROCOVA project1 and started after the COVID-19 pandemic led 
to a widening of the divide in math competences between children 
[47, 48]. Through a large scale user study (� = 130 8-11 y.o.), that 
included three sessions within a week, we have shown that the math 
robot tutor is efective in improving children’s math performance 
[37]. 

However, to truly reduce math defciencies, children need to 
keep practicing throughout their school careers [24, 44]. Keeping 
children engaged during recurring interactions with a tutor robot 
spanning a long period of time is a key challenge in the feld of 
human-robot interaction (HRI) [33, 38]. In previous work it has 
been shown that fostering the child-robot relationship provides a 
more sustainable motivation for engagement than the novelty efect 
[23, 38, 49]. Furthermore, a more relatable robot can potentially 
increase children’s intrinsic motivation to work on math with the 
robot [10, 15]. 

However, an aspect of long-term HRI that has not yet been stud-
ied much is how to sustain a relationship after a signifcant break. 

1http://www.sorocova.nl/ 
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In schools, holidays provide a natural gap between interaction ses-
sions, but also breaks due to inconsistent use of robots by teaching 
staf or robot malfunctions are common [52]. In this paper, we in-
vestigate such a break in the interaction and how to best sustain 
the child-robot relationship in an educational setting. 

After the three initial sessions (phase 1), we returned nine months 
later to the same six schools to host a fourth robot math tutoring 
session (phase 2) with the same participants (� = 113, 9-12 y.o.). 
The participants had moved up from group 62 to group 7. 

To better foster the child-robot relationship, we implemented a 
memory-based personalization strategy [38] that makes the conver-
sation more personal by referring to information that the child had 
shared previously [34], matching the conversational topics of the 
math dialogs to children’s interests [37], and co-creating a secret 
handshake [40]. To address the break in the interaction, we devel-
oped a novel ‘getting reacquainted’ module for the memory-based 
personalization strategy to allow children to ‘catch up’ with the 
robot after a break. 

In this paper, we focus on the social design components (dis-
cussed in Sections 2 and 3) of our robot math tutor and investigate to 
what extent they sustain the child-robot relationship after the nine 
month break (see Sections 4-7). In particular, we were interested 
in the contribution of memory references, personalizing the math 
dialogs, and the ‘reacquainted moment’ to keep children interested 
in the robot after the break. 

2 RELATED WORK 

2.1 Challenges of Long-Term Social Robot 
Tutors 

Designing social robots that have to operate for a longer time in 
primary education is challenging for two reasons. Firstly, during 
their frst twelve years, children experience crucial cognitive and 
social-emotional developments that rapidly change their educa-
tional needs, personal interests, and even their preferred interac-
tions with robots [34, 51]. Secondly, children tend to learn more 
from tutors who are socially meaningful, often out of distrust of in-
formation coming from unfamiliar agents [8, 19, 32]. Over time, the 
robot thus needs to adapt its content and behaviors to refect these 
personal changes and remain interesting, engaging, and relevant 
to the child [33, 55]. 

2.2 Social Personalization by Educational 
Robots 

Personalization is an important concept in educational robotics 
[3, 55]. Often the focus lies on adapting the educational content 
[35], feedback [16], or learning strategies [36] to improve children’s 
performance and competences [3, 22]. However, to address the 
social aspects of learning we also need social personalization; for 
example, by adapting the motivational prompts given by the tutor 
infuenced by the afective state of the child [14]. 

In this paper we focus, in particular, on social personalization 
that contributes to relationship formation. Inspiration can be drawn 
from how student-teacher relationships develop. Children feeling 
heard and seen by the teacher is not only crucial for relationship 

2Group 6 (9-10 y.o.) and 7 (10-11 y.o.) are labels of the Dutch school system 

building [45], but also creates an inclusive learning atmosphere 
[41], benefting both the student and the teacher [12]. 

One key improvement is for the child to feel remembered by the 
robot and to experience a development in the relationship [25, 38]. 
By asking the child to disclose information about themselves and 
to subsequently enable the robot to refer back to that information 
and use it to make the interaction more personal is a powerful 
strategy for giving children the feeling that they are heard and 
remembered by the robot, thereby fostering the relationship over 
time [21, 25, 30, 34, 39]. 

3 DESIGN RATIONALE FOR SOCIAL 
PERSONALIZATION 

In this section, we present the specifcation of a memory-based 
personalization strategy that a robot math tutor can use to remain 
socially engaging and relevant, even after a break. In particular, we 
focus on three individual components to obtain this social relevancy: 
using memory references, personalizing the math dialogs, and the 
‘reacquainted moment’. We are interested in studying the efects 
of these components on sustaining the child-robot relationship 
after a break. To steer our investigation, we formulated hypothe-
ses about the design as a whole and each individual component. 
We will test these hypotheses with a user study comparing the 
social personalization strategy with a non-personalized equivalent 
alternative. 

3.1 Social Robot Math Tutor 
The key design principle of the social robot math tutor is to in-
terweave social interaction with practicing math. This principle is 
theoretically grounded in social constructivism, which argues that 
learning is inherently a socially interactive process [1, 28, 46, 54]. 
One practical reason is that previous research has shown that social 
behaviors can actually distract from the educational activity if they 
are not directly linked [27, 29]. 

The main mode of interaction of the social robot tutor is a conver-
sation. During every session the robot chitchats with the children 
and asks them questions about their hobbies and interests. This is 
followed by a series of math dialogs, in which the robot shares brief 
anecdotes about its fctional past jobs. A multiplication problem is 
embedded in each math dialog. For example, “I used to work as a 
dishwasher. During one shift, I had to clean 7 stacks of 14 plates. 
How many plates did I have to clean that shift? What is 7 times 
14?”. 

The robot displays the problem on a tablet next to the robot. Chil-
dren are given a pencil and paper to do the calculations (see Figure 
1). While they are calculating the robot waits patiently. There are 
buttons located on the robot’s feet. Children can press one button 
to signal to the robot that they are ready to verbally answer or press 
the other button to signal that they need help. If speech recognition 
fails after two attempts, children can provide the answer via the 
tablet. After a verbal answer, the robot repeats the answer and gives 
children the opportunity to correct the answers if necessary. 

If children signal for help or answer incorrectly, the robot breaks 
down the sum following the principles of progressive schematiza-
tion [13, 20, 50]. For example, “14 can be split into 10 and 4. You 
can solve 7 x 14 by adding the results of 7 x 10 and 7 x 4”. For each 
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Figure 1: Experimental set-up with the robot in the middle, 
a small lap table with a paper and pencil on the right, and 
a tablet on the left. The child and the robot are doing their 
secret handshake. 

new type of problem the child encounters, the robot proactively 
demonstrates how to breakdown each type of problem. 

We developed a rule-based artifcial cognitive agent3 to allow 
the robot to autonomously manage a multi-session child-robot 
conversation. 

3.2 Memory-based Personalization 
Memory-based personalization is the primary strategy for the ro-
bot to make the tutoring appear more personal. It persistently 
stores children’s answers to the questions the robot asks during 
the chitchat. In this way, the robot collects what children’s hobbies, 
interests, and preferences are. The robot uses this information in 
three ways. It includes references to this information throughout 
the conversation in the current or following sessions. We term these 
memory references. Secondly, the robot uses the collected interests 
and preferences to personalize the math dialogs. And thirdly, the 
robot can summarize the collected information to communicate 
to the child that it remembers them after a break. This is a core 
feature of the ‘getting reacquainted’ component. These individual 
components are discussed in more detail below. 

After the three sessions in the frst phase, we found no main 
efect of personalization on the child-robot relationship [37]. In pre-
vious work, diferences in relationship scores due to personalization 
started emerging after four or fve ffteen-minute sessions. After the 
third session relationship scores started decreasing overall. How-
ever, the decline was less strong when the robot personalized the 
interaction [38]. Since the length of the exposures and the content 
of personalization in our study are similar, we expect similar efects 
even though there is a nine month break between session three 
and four in our study. Thus, we hypothesise that personalization 
will result in a stronger child-robot relationship after the fourth 
session compared to no personalization (H1a) and the child-robot 
relationship will decline overall between sessions three and four 
(H1b). 

3Code is available here: https://bitbucket.org/socialroboticshub/sorocova-back-to-
school/src/main/ 

3.3 Memory References 
The key principle underpinning memory references are communi-
cating to the child that the robot listens to them, recognizes them, 
and remembers them. The robot does this in two ways. The frst 
is by creating a secret handshake in the frst session. Children 
can choose a song fragment and physically move the robot’s arms 
around to create the handshake (see Figure 1). The robot displays 
this secret handshake during every greeting and goodbye. However, 
a default wave is used when the robot does not personalize. 

Secondly, the robot refers back to information shared by the child 
in a previous conversation. The robot flls the slots of the templated 
dialogs to make a reference. A memory reference is often used to 
motivate the inclusion of a new conversational topic, for example 
“You like [horses] right? I have a cool story about [horses]’. Or 
to make connections between the current and past conversations; 
for example, “My robot friend’s head was [orange], just like your 
favorite color”. A non-memory equivalent utterance would be, for 
example, “My robot friend’s head was blue, just like its favorite 
color”. 

The memory references are designed to be explicit and reinforce 
the child-robot relationship. During the frst phase we observed 
that children interpreted statements that were not informed by 
the memory as memory references. We expect that after more 
exposure (i.e. more sessions) the diference between a genuine 
memory reference and non-memory equivalent statements will be 
more clear. We hypothesise that children will perceive there are 
more memory references in the personalization condition (H2a). 
Children will perceive less memory references after more exposure 
when it does not personalize (H2b) and perceive an equivalent 
amount of memory references after more exposure when it does 
personalize (H2c). Finally, we expect a positive relationship between 
the perception of memory references and relationship formation 
between the child and the robot (H2d). 

3.4 Personalized Math Dialogs 
We created a collection of templated math dialogs. Each math dialog 
centers around one topic. These topics are related to one or more of 
the topics discussed during chitchat. Some math dialogs follow-up 
on others. The topic and dependencies are specifed in the metadata 
of each math dialog. 

The math dialogs are personalized in two ways. Firstly, the arti-
fcial agent uses the information collected about the child and the 
interaction history to reason about which math dialog is the best 
match to include next in the conversation. When the robot does not 
personalize, the agent randomly selects a math dialog. Secondly, 
the robot uses slot flling to tailor a math dialog to a child’s known 
preference for that topic. For example, “In the restaurant that I 
worked at, I used to prepare a lot of [pizza]”. When the robot does 
not personalize, a predefned generic slot fll is used. 

The aim of personalizing the math dialogs is to make them more 
interesting for children and reinforce the child-robot relationship. 
We expect that after more exposure, as the novelty of the math 
dialogs decreases, personalization becomes more important. We 
hypothesise that children will fnd the personalized math dialogs 
more interesting (H3a). When the robot does not personalize, chil-
dren’s interest in the math dialogs decreases after more exposure 
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(H3b) and when the robot does personalize, children’s interest in 
the math dialogs remains equivalent after more exposure (H3c). 
Finally, we expect a positive relationship between dialog interest 
and relationship formation (H3d). 

3.5 Getting Reacquainted 
To address the nine-month break between the two phases we de-
signed a getting reacquainted moment at the start of phase 2. As 
always, the robot greets the child by their name and displays their 
secret handshake. Then the robot provides a short recap of the con-
versations the child and the robot had during phase 1. The primary 
goal of the recap is to reinforce the notion that the robot remembers 
the child and feels fondly about their previous interactions. It re-
calls fve interests or preferences about the child. Finally, the robot 
provides a brief refresher of how the tutoring and communication 
works. 

When the robot has no access to the memory and does not 
personalize, it instead greets the child with a default wave and the 
blanket statement “Hi, nice to see you again”. Instead of recapping 
the previous interaction, the robot reintroduces itself, talks about 
why it likes to do math, but the robot does provide the tutorial 
recap. 

The aim of the ‘reacquainted moment’ is not only for children 
to refamiliarize with the robot, but to also give them the feeling 
that they are remembered by the robot. This in turn should further 
foster their relationship. We hypothesise that personalization will 
lead to children feeling more remembered by the robot (H4a) and 
that there is positive relationship between feeling remembered and 
relationship formation (H4b). 

4 METHOD 
We ran a multi-session user study in two phases. First, participants 
practiced math with the help of a tutor robot for three sessions 
within a week (phase 1). Then the robot left the school for nine 
months and came back for a fourth session4 with the same partici-
pants (phase 2). 

4.1 Participants 
In phase 1, 130 children (group 6; 8-10 y.o.; 63 boys and 67 girls) 
completed the experiment. In phase 2, 113 (group 7; 9-12 y.o.; 55 
boys and 58 girls) children from the frst phase (the original sample) 
completed the experiment. Five participants that participated in 
phase 2, did not complete the experiment for technical reasons. 17 
participants that participated in phase 1, did not in phase 2 because 
they were not at school during the experiment (e.g. they were sick 
or had changed schools). 

We followed the guideline of Hogg & Tanis (2020) to recruit at 
least 30 participants per condition (and at least 100 respondents 
in total) [18]. With 4 (original) conditions, our minimum desired 
sample was therefore 120 participants. But we aimed for 130-140 
participants to account for possible dropouts during the recurring 
study. 

During phase 1, participants of the same age, gender, and math 
level were randomly split over the experimental conditions. Those 

4The original plan was to have again three sessions, but we did not have the human 
resources for more than one. 

conditions were the same in phase 2. Participants and their legal 
guardians signed informed consent forms before participating in 
phase 1 that also gave consent for participation in phase 2. This 
study was approved by the ethical committee of the institution of 
the last author (ref. number: 2022-054032). 

4.2 Experimental Design 
The full experiment had a mixed factorial design, with personaliza-
tion and scafolding as the between-subject factors and sessions as 
a within-subjects factor. To address the hypotheses in this paper, 
we only focus on personalization (without vs. with) as the between-
subjects factor and phases 1 and 2 as within-subjects factor. The 
dependent variables were measured once after phase 1 and once 
again after phase 2. 

4.3 Quantitative Measures and Instruments 
The four dependent variables in phase 2 are relationship formation, 
perceived memory references, dialog interest, and feeling remem-
bered. They were measured using a self-report questionnaire. The 
relationship formation scale was based on the scale developed by 
[53] and [8] and contained six items (Cronbachs � phase 1: .73, phase 
2: .85). The items cover aspects of comfort, similarity, friendship, 
and willingness to continue interacting. To accommodate children, 
a 4-point Likert scale was used: No, defnitely not; No, not so; Yes, 
a little; Yes, defnitely so [9]. The other variables were measured 
using a single item manipulation check on the same 4-point scale. 
The full questionnaire is available as supplementary material. 

4.4 Qualitative Measures and Analysis 
We conducted semi-structured interviews after session 3 and before 
and after session 4. We analysed the answers to four diferent ques-
tions. To investigate the impact of the robot’s memory we asked 
participants before session 4 to speculate about what they thought 
the robot might remember about them (1). As part of the manipula-
tion check children rated whether they felt the robot remembered 
them. During the post interview for session we asked participants 
how they noticed the robot remembered them (or not) (2) and what 
they though about the robot (not) doing that (3). To investigate 
diferences in the experience of the relationship before and after 
the break we asked participants, after session 3 and 4, to explain 
why the robot did (not) suit them (4). 

Due to time constraints we analysed about half (� = 3 interviews 
per participant x 55 participants = 165) of the interviews (random 
sample while balancing the conditions (�� = 29 and ��� = 26), 
gender, and math level). The interviews were recorded on audio and 
automatically transcribed with Whisper (medium model) [43]. We 
performed a thematic analysis [5] where we followed a structured 
data-driven coding approach [11]. First, the sample was divided 
over fve coders who collected the participants’ responses to the 
fve questions and coded each response. Secondly, the codes were 
reviewed by another coder. Finally, during a collective discussion 
the codes were refned and grouped under themes. 

4.5 Set-up and Procedure 
The set-up and procedure for phases 1 and 2 were almost identical. 
The study took place in an otherwise unoccupied room in the school 
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during normal school days. A 57 cm tall V6 Nao (humanoid) robot 
was used (see Figure 1). It was placed on the ground. On one side, a 
9.9 inch Lenova Tab4 10 tablet was placed in a tablet stand. On the 
other side a lap table was placed with paper and pencil on it. A rug 
was placed in front of the robot to allow the participants to sit and 
a handycam camera was positioned behind the robot to record the 
participants’ behaviors during the interaction. The robot operated 
autonomously and was started from a laptop by a research assistant. 
The research assistant remained in the room but was positioned far 
behind the participant to avoid unnecessary contact. The research 
assistant would only intervene in the case of a system crash. After 
a reboot, the participant could continue the interaction where they 
left of. 

Participants came into the room one by one. There were three 
sessions on separate days within one week in phase 1. After nine 
months session 4 took place as part of phase 2. At the start of 
phases 1 and 2, participants received general instructions about the 
study and the robot, and were reminded that they could stop at 
any moment without giving any reason and without consequences. 
Session 1 in phase 1 started with a tutorial on how to talk to the 
robot and how the math exercises worked. Session 4 in phase 2 
included a ‘reacquaintance moment’ (described in Section 3.5) and 
a recap tutorial. 

All four sessions consisted of a math activity (specifed in Section 
3.1). After phases 1 and 2, participants could say goodbye to the 
robot and were taken to a separate room where they flled in the 
digital questionnaire and were interviewed by another research 
assistant who was unaware of the experimental condition to prevent 
a bias in the questioning. 

5 RESULTS 
The method of Brunner et al. (2002) [4], and the nparLD R-package 
[42], for non-parametric analysis of longitudinal data in factorial 
experiments (with the Wald-Type Statistic [WTS]) was used to 
perform a phase x personalization analysis (�� = 55 and ��� = 58) 
on relationship formation, perceived memory reference, and dialog 
interest. Wilcoxon signed-rank and Mann-Whitney U post-hoc 
tests were to test for main efects of phase and personalization 
respectively. For hypotheses �2� and �3� Wilcoxon equivalence 
tests were run using the TOSTER R-package [31]. Reported efect 
sizes of similar constructs in comparable studies (e.g. [39]) are 
typically high (> .8). To be on the safe side we selected the smallest 
efect size of interest (SESOI) to be .5. 

Furthermore, a Mann-Whitney U test was used to check for a 
main personalization efect on feeling remembered. All data points 
are median [quartiles]. Spearman’s rank-order correlation tests 
were run to assess the relationship between the individual items of 
the relationship formation questionnaire and perceived memory 
references, dialog interest, and feeling remembered (only in phase 
2). The correlations for phase 1 are reported in Table 1 and for 
phase 2 in Table 2. Aside from the relationship formation scale, 
correlations are also reported for the individual items of this scale 
as well. 
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Figure 2: Relationship formation (top left), perceived mem-
ory references (top right), dialog interest (bottom left) scores 
per condition per phase, and feeling remembered scores per 
condition (bottom right) 

5.1 Relationship Formation 
The overall diference of relationship formation scores (see Figure 
2; top left) between personalization conditions was found to be 
not statistically signifcant, ��� = 3.3, � = .07. There was a main 
efect of phase on relationship formation, ��� = 15.3, � = .00009, 
� = .74 The interaction between phase and personalization was 
found to be not statistically signifcant, ��� = 1.7, � = .19. The 
scores decreased between phases in both conditions. However, in 
the no-personalization condition the decline between phase 1 (3.8 
[3.5, 3.95]) and 2 (3.6 [3.2, 3.8]) was stronger, � = 907, � = .0003, 
� = .80, than in the personalization condition; phase 1 (3.8 [3.6, 
4.0]) and 2 (3.8 [3.4, 4.0]), � = 443, � = .035. After the frst phase. 
the relationship formation scores were not statistically signifcant, 
� = 1413, � = .28, but after the second phase the participants re-
ported statistically signifcantly more relationship formation in the 
personalization condition than in the no-personalization condition, 
� = 1256, � = .048, � = .37. 

5.2 Perceived Memory References 
There was a main efect of personalization on the perception of 
memory references (see Figure 2; top right), ��� = 68, � < .00001, 
d = 1.9. There was a main efect of phase, ��� = 6, � = .01, 
� = .57. The phase x personalization interaction was not statistically 
signifcant, ��� = 1.8, � = .28. In phase 1, the scores in the 
personalization condition (4 [4, 4]) were statistically signifcantly 
higher than in the no-personalization condition (3 [3, 4]), � = 357, 
� < .00001, � = 1.03. In the no-personalization condition the 
scores statistically signifcantly decreased between phases, � = 
294, � = .03, � = 1.24. The diference between the phases in the 
personalization condition was not statistically signifcant, � = 
72, � = .5. The TOST equivalence test, on the other hand, was 
statistically signifcant, � = 189, � = .0012. This resulted in an 
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Table 1: Spearman’s rank-order correlation between the in-
dividual relationship formation questionnaire items and 
perceived memory references and dialog interest scores for 
phase 1. 

Measure R 1 2 3 4 5 6 M1 M2 
R. Relationship formation -
1. Comfortable .53*** -
2. Suits me .83*** .42*** -
3. Feels like a friend .70*** .11 .38*** -
4. Continue chat .57*** .19* .32*** .48*** -
5. More activities .57*** .36*** .28*** .33*** .38*** -
6. Meet more often .42*** .25** .26** .12 .24* .43*** -
M1. Memory reference .10 -.17 .07 .27* .08 .12 -.04 -
M2. dialog Interest .28* .26* .17* .34** .07 .23* .04 .21 -
*** sig. at 0.0001, ** sig. at .01, * sig at .05 

Table 2: Spearman’s rank-order correlation between the indi-
vidual relationship formation questionnaire items and per-
ceived memory references, dialog interest, and feeling re-
membered scores for phase 2. 

Measure R 1 2 3 4 5 6 M1 M2 M3 

R. Relationship formation -
1. Comfortable .67*** -
2. Suits me .82*** .48*** -
3. Feels like a friend .81*** .50*** .54*** -
4. Continue chat .73*** .42*** .54*** .49*** -
5. More activities .59*** .33*** .36*** .35*** .52*** -
6. Meet more often .61*** .43*** .43*** .42*** .66*** .52*** -
M1. Memory reference .25** .15 .34*** .23* .10 .10 -.03 -
M2. dialog Interest .40*** .38*** .33*** .37*** .40*** .14 .34*** .26** -
M3. Remembrance .19* .06 .26** .20* .05 .02 .07 .56*** .16 -
*** sig. at 0.0001, ** sig. at .01, * sig at .05 

even bigger gap between the personalization (4 [3, 4]) and no-
personalization condition (3 [2, 3]) in study 2, � = 242, � < .00001, 
� = 1.5. 

5.3 Math Dialog Interest 
The overall diferences between dialog interests scores neither be-
tween conditions and phase (see Figure 2; bottom left), nor their in-
teraction, were statistically signifcant, all ��� < 3.5, all � ′ � > .06. 
As reported in [37], the dialogs were statistically signifcantly more 
interesting in the personalization condition (4 [3, 4]) than in the no-
personalization condition (3 [3, 3.5]) in phase 1, � = 551, � = .016, 
� = .488, but the diference between the personalization condition 
(3 [3, 4]) and the no-personalization condition (3 [3, 4]) was not 
statistically signifcant in phase 2, � = 697, � = .48. In both condi-
tions the interest scores were statistically equivalent in both phases, 
��� = 87, ��� = .002 and �� = 165, �� = .0004. 

5.4 Feeling Remembered 
Participants statistically signifcantly felt more remembered by the 
robot (see Figure 2; bottom right) in the personalization condition 
(4 [4, 4]) than in the no-personalization condition (3 [2 3]), � = 394, 
� < .00001, d = .91. 

Before session 4 we asked participants what they expected the 
robot to remember about them. Slightly more than half of the sample 
expected the robot to have a memory (Personalization: 69% vs. No-
Personalization: 42%). We identifed that participants expected the 
robot to have a social memory and remember their name, interests, 
or the secret handshake (P: 48% vs. NP: 31%), their math level (P: 

14% vs. NP: 4% ), or remember things “because it is a computer” or 
“it probably has access to the cloud” (P: 17% vs. NP: 12%). Finally, in 
the no-personalization condition participants were less sure what 
to expect, 46% could not answer the question versus 20% in the 
personalization condition. 

After session 4 we asked how they could tell the robot remem-
bered them or not. In the personalization condition 93% of the sam-
ple explicitly referred to the robot recalling their interests (81%), 
name (48%), or the secret handshake (44%) as the reason they felt 
remembered. The remaining 7% felt remembered, but could not 
specify why. In the no-personalization condition 19% (incorrectly) 
thought the robot recalled their interests, name, or secret handshake 
(all 40%). Another 19% mentioned the lack of memory references as 
a reason they did not feel remembered. 38% felt remembered, but 
could not specify why. Finally, 12% could not answer the question. 

Participants (13%) who did not feel remembered (i.e. score 1 or 2; 
all in no-personalization condition) were mostly ambivalent (71%) 
or sometimes disappointed (29%) about it. A positive point remarked 
by one participant is that it ofered the opportunity to share more 
current information with the robot after the break. For those that 
felt remembered by the robot (87%) it was hard to articulate what 
they thought about it. The majority (79%) gave nondescript positive 
remarks (e.g. “it was cool the robot did that”). A specifc remark 
that was given more than once (7%) was “[I appreciated] that the 
robot did not have to ask the same questions again, because he can 
remember my answers from last time.” 

We also asked participants why the robot suited them. After 
3 sessions 15% of the sample argued that the robot was a good 
ft because it had similar interests and preferences. The feeling of 
similarity increased to 40% after session 4, often citing the memory 
references used during the ‘getting reacquainted’ moment explicitly. 
The feeling of similarity replaced enjoyment of the interaction as a 
key motivation for a good ft. Enjoyment was mentioned by 31% of 
the sample after session 3 and by 20% after session 4. 

6 DISCUSSION 

6.1 Efects of Social Personalization on the 
Child-Robot Tutor Relationship After a 
Break 

Participants felt a signifcantly stronger relationship after the break 
(i.e. after session 4) when it personalized the interaction than when 
it did not personalize. We can therefore accept hypothesis � 1� . The 
diference in relationship scores between personalization and no 
personalization was not statistically signifcant before the break (i.e. 
after session 3). Overall, the relationship scores where high across 
the board, but they did decline slightly, and statistically signifcantly, 
between session 3 and 4. We can therefore accept hypothesis � 1� . 

It prompts the question of what causes the decline in the relation-
ship scores. Perhaps, the break cooled the relationship somewhat. 
Interestingly, however, is that Ligthart et al. (2022) reported a similar 
decline in relationship scores between a third and ffth interaction, 
but without a break. Those interactions were similar in length (i.e. 
between 15 and 20 minutes per session) and format (personalized 
conversation). Those scholars argue that it does not mean that 
children experience a weaker relationship over time. Instead, they 
suggest that children have not experienced a relationship with the 
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robot and, as a consequence, rate the relationship scale items based 
on what they hope the relationship will be. After more exposure to 
the robot and experiencing more of the relationship, they rate the 
items based on that experience [39]. In most cases it does not live up 
to the high expectations [6], reducing the gratifcation, thus result-
ing in lower scores [26]. Our results add to the evidence supporting 
this explanation. The internal consistency of the relationship for-
mation scale improved between phases 1 and 2. This suggests that 
participants were more sure about how to rate the items after phase 
2 than after phase 1. 

Ligthart et al. (2022) furthermore reported that, similar to our 
fndings, only after the ffth session a main efect of personalization 
was found on relationship formation [39]. Besides the lack of a 
break, another important diference between studies is that ours 
centered around an educational task, while theirs was purely a 
social conversation. 

The fndings contribute in the following fve ways. Firstly, we 
replicate the results of [39] and add to the evidence that memory-
based personalization is an efective strategy for relationship build-
ing. Secondly, we strengthen the evidence for the hypothesis that 
children frst rate their relationship with the robot as what could 
be, and after more exposure switch to a more genuine evaluation. 
This stresses the importance of running more longitudinal studies, 
because especially efects that rely on self-report might be infated 
by unrealistic expectations. 

Thirdly, we demonstrate that relationship building also works 
when the personalization is integrated in the educational task. This 
is important, because if the educational task and social behaviors 
are separated, the social behaviors can actually distract from the 
education task [27, 29]. Fourthly, the fndings suggest that the 
amount of time passed between interactions is not as important 
as the amount of exposure to the robot for relationship formation 
and assessment. The break did not seem to afect the relationship 
scores, when comparing the scores with a similar study that did not 
have a break [39]. Finally, the break also did not seem to reduce the 
efectiveness of the personalization strategy. Thus, memory-based 
personalization is a robust strategy for relationship building even 
if there are breaks in the interaction. 

6.2 Contribution of Memory References 
When the robot personalizes, children perceived the robot to in-
clude more memorable information that they had previously shared 
with the robot. This was signifcantly the case in both phases. We 
can therefore accept hypothesis �2� . Interestingly, after phase 1 
participants in the no-personalization condition were reasonably 
sure that the robot made personal memory references, while in 
fact the dialogs were all scripted and did not use stored informa-
tion. This might be caused by a form-function attribution bias [17], 
where the social behaviors, and perhaps the humanoid appearance, 
of the Nao robot made children assume it made memory references 
[2]. In the no-personalization condition participants perceived sig-
nifcantly less memory references after phase 2 than phase 1. In the 
personalization condition this perception remained equivalently 
high between both phases. We can therefore accept hypothesis 
�2� and �2� respectively. Looking at the scores after phase 2, par-
ticipants were fairly sure whether or not the robot used memory 

references, indicating that the form function bias reduces with 
increasing exposure to the robot. 

As the diferences between conditions and between phases 1 
and 2 grow, the importance of including memory references be-
comes clearer. After phase 2, there is a signifcant but weak positive 
relationship between perceiving the memory references and rela-
tionship formation (�� = .25). We can therefore accept hypothesis 
� 2� . By looking at the correlations between the perception of 
memory references and the individual items of the relationship 
formation scale, we can gain more detailed insights about which 
parts of relationship formation are probably supported by the mem-
ory references. Our study shows that children who perceive more 
memory references feel the robot is a better ft (�� = .34 ) and the 
robot feels more like a friend (�� = .23). This is confrmed by the 
interviews. Memory references however do not signifcantly relate 
to children’s willingness to interact more with the robot. 

Finally, the use of memory references in earlier sessions does 
increase children’s expectations towards the robot doing so in future 
sessions even after a big break. It also becomes more important for 
relationship formation, especially to feel more similar to the robot. 
After session 4 more participants indicated that memory references 
were a key reason for why they felt similar to the robot, compared 
to session 3. 

6.3 Contribution of Personalized Math Dialogs 
The diferences in interest scores of the math dialogs with or with-
out personalization were not statistically signifcant. We therefore 
have to reject hypothesis � 3� . Where after phase 1 children did 
fnd personalized math dialogs more interesting, this diference 
dissipated in phase 2. In both conditions the scores after phases 1 
and 2 were equivalent. We can therefore reject hypothesis �3� and 
accept hypothesis �3� . 

The math dialogs were generally rated as interesting irregardless 
of personalization and phase. It confrms we succeeded in creating 
appealing math dialogs that are generally aligned with children’s 
interests. It is possible that personalizing them only marginally 
improves them. However, we would like to suggest two possible 
factors that could have reduced the efectiveness of the personal-
ization in phase 2. 

The robot used information from both previous sessions as well 
as the current session to personalize the math dialogs. In phase 
2, about 60% of the math dialogs were tailored with information 
from phase 1, nine months prior. It could be that the information 
had become outdated, because children’s interests had changed or 
certain topics had become less relevant to them. 

Another plausible explanation is that children were never inter-
ested in one or more of the topics anyway. They provided an answer 
when the robot asked what their favorite wild animal was for exam-
ple, while they actually do not have a strong preference. Regardless 
of their lack of preference, they appreciated the robot using it to 
personalize a math dialog during phase 1. After the break either 
this appreciation faded or they simply forgot what answer they 
gave, resulting in them not recognizing a personalization attempt 
by the robot. 

Furthermore we found that the more interesting the math di-
alogs were to the child, the stronger the relationship formation 
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(�� = .40). We can therefore accept hypothesis �3� . Looking at 
the correlations between story interest and the individual relation-
ship formation items, we found that children felt more comfortable 
around the robot, the robot was a better ft, felt more like a friend, 
and children were more willing to continue interacting with the 
robot. The correlations became stronger between phases 1 and 2, 
signaling the importance of investing efort in keeping the math 
dialogs interesting as children keep interacting with the robot. 

To improve our design we need to better account for changing 
or inaccurate interests and preferences. Including verifcation of 
the relevance and accuracy of collected information about the child 
could be a key improvement. This verifcation should be integrated 
in the conversation in a clever way, i.e. to not be obtuse or repeti-
tive, when new information is received and after a signifcant break. 
The weak positive correlation in phase 2 between perceiving mem-
ory references and dialog interest signals another opportunity for 
(minimally) improving the personalization strategy. If the robot 
more clearly communicates to the child that it weaves information 
previously shared by the child into the math dialogs, it might make 
them more interesting. 

6.4 Contribution of Getting Reacquainted 
Children felt signifcantly more remembered by the robot in the 
personalization condition. We can therefore accept � 4� . During 
the interview participants indicated that the robot’s summary of 
their preferences was a key reason they felt remembered by the 
robot. 1 out of 5 participants in the no-personalization condition 
explicitly mentioned the lack of memory references reduced their 
feeling of being remembered. Memory references are an important 
mechanism for feeling remembered (�� = .56). Feeling remembered 
was strongly appreciated by the participants. 

Having a recap, irregardless of whether children actually (fully) 
recognize themselves in it, might also contribute to this efect as 
well. Furthermore, in the no-personalization condition, the robot 
ofered no recap, but did say “nice to see you again”. Some children 
indicated that this statement alone was enough for them to feel 
remembered by the robot. Investigating how much the robot must 
share and how accurate it must be for children to feel remembered 
will be an interesting question for future work. 

There was a weak positive relationship between feeling remem-
bered and relationship formation (�� = .19). We can therefore ten-
tatively accept �4� . The robot felt to be a better ft and more like a 
friend when children felt it remembered them more. When children 
felt more remembered it did not mean they felt more comfortable 
or were more willing to continue interacting as well. 

6.5 Limitations 
Although the study included multiple sessions and took place in a 
school setting, it was still relatively short (in an educational context) 
and controlled. For example, there was a researcher in the room dur-
ing the interactions. Even though the robot operated autonomously 
and had some ability to adapt to each child, the majority of the 
interaction was scripted. More work is to be done to verify how 
much holds up unsupervised in a real class room (e.g. like [7]) with 
more sessions over a longer time. 

The investigation of the contribution of the individual design 
components is based on single item manipulation checks. Although 
this does not necessarily diminish the value of children’s responses, 
the conclusions do depend on the interpretation of this one item. 
Although we are confdent that the children understood these items 
well, this needs to be kept in mind when considering the fndings. 

Finally, the signifcant correlations we reported were mostly 
weak to moderate. This reemphasizes the complexity of factors 
infuencing child-robot interaction. We must not oversimplify. Yes, 
we believe our designs are efective, but that does not mean they 
are the best or indeed the only way to achieve the intended efects. 

6.6 Future Work 
A key fnding of the discussed work regarding personalizing in-
teractions, is the importance of signalling that the robot is using 
information previously shared by the child. How to achieve this 
efectively, without becoming repetitive, gimmicky, or outright ob-
noxious over time will be an important question for future research. 

In this paper we took a deep dive into the social design elements 
of the robot math tutor. A similar investigation focusing on the 
math design elements themselves would also be valuable. 

Finally, we are currently analysing task and robot engagement 
on the basis of the collected video data. The results will be reported 
in future work. 

7 CONCLUSION 
Memory-based personalization that makes tutoring by a robot more 
personal is an efective strategy to make the tutoring more sustain-
able. We have shown that our personalization strategy robustly 
fosters the child-robot relationship past a nine-month break. 

Enabling the robot to refer to information that the child pre-
viously shared with it is a key component of the personalization 
strategy. Conditional for the efectiveness of these memory refer-
ences is that children notice the robot making them. Feeling re-
membered by the robot also contributes to relationship formation, 
albeit to a lesser extent. Including a moment to get reacquainted 
after a longer break between sessions supports the feeling of being 
remembered. However, personalizing the math dialogs seems to 
be less successful. Although children’s interest in the math dialog 
is positively related to relationship formation, the way in which 
they were personalized did not increase children’s interest. It seems 
likely that the information used to tailor the math dialogs was not 
sufciently relevant or meaningful. Validating the social relevancy 
of memory information is an important next step, especially when 
there are breaks in the interaction. 

By making robot tutoring more personal, a social robot tutor 
can increase its long-term impact and fnally fulfl its purpose to 
support children in their learning around the world. 
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